Diffusion-mediated geminate reactions under excluded volume interactions.
نویسندگان
چکیده
In this paper, influence of crowding by inert particles on the geminate reaction kinetics is theoretically investigated. Time evolution equations for the survival probability of a geminate pair are derived from the master equation taking into account the correlation among all diffusing particles, and the results are compared with those obtained by Monte Carlo simulations. In general, excluded volume interactions by the inert particles slow down the diffusive motion of reactants. However, when the initial concentration of the inert particles is uniform and high, we show that additional influence of interference between reaction and correlated diffusion accelerates the transient decay of the survival probability in the diffusion-controlled limit. We also study the escape probability for a nonuniform initial distribution of the inert particles by taking the continuous limit in space. We show that reaction yield is increased when the reaction proceeds in the presence of a positive density gradient of the inert particles which inhibits the escape of reactants. The effect can be interpreted as a cage effect.
منابع مشابه
From molecular chemistry to supramolecular chemistry to superdupermolecular chemistry. Controlling covalent bond formation through non-covalent and magnetic interactions.
The reactions of carbon centered radical pairs often involve diffusion controlled combination and/or disproportionation reactions which are non-selective. A triplet geminate pair of radicals is produced by the photolysis of suitable ketones. The reactions of such geminate pairs can be controlled though the application of supramolecular concepts which emphasize non-covalent interaction to "steer...
متن کاملReactions, Diffusion and Volume Exclusion in a Heterogeneous System of Interacting Particles
Complex biological and physical transport processes are often described through systems of interacting particles. Excluded-volume effects on these transport processes are well studied, however the interplay between volume exclusion and reactions between heterogenous particles is less well known. In this paper we develop a novel framework for modeling reaction-diffusion processes which directly ...
متن کاملComparison of Alternate Approaches for Reversible Geminate Recombination
This work compares various models for geminate reversible diffusion influenced reactions. The commonly utilized contact reactivity model (an extension of the Collins-Kimball radiation boundary condition) is augmented here by a volume reactivity model, which extends the celebrated Feynman-Kac equation for irreversible depletion within a reaction sphere. We obtain the exact analytic solution in L...
متن کاملMolecular finite-size effects in stochastic models of equilibrium chemical systems.
The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an...
متن کاملOn the role of solute solvation and excluded-volume interactions in coupled diffusion.
Coupled diffusion is observed in multicomponent liquid mixtures in which strong thermodynamic interactions occur. This phenomenon is described by cross terms in the matrix of multicomponent diffusion coefficients. This paper reports a theoretical analysis on the relative role of thermodynamic factors and Onsager cross-coefficients on cross-diffusion coefficients relevant to ternary mixtures con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 85 1 Pt 1 شماره
صفحات -
تاریخ انتشار 2012